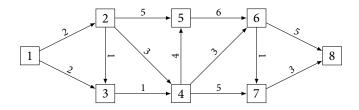
Lesson 10. The Principle of Optimality and Formulating Recursions

0 Warm up

Example 1. Consider the following directed graph. The labels on the edges are edge lengths.



In this order:

a. Find a shortest path from node 1 to node 8. What is its length?

Path: Length:

b. Find a shortest path from node 3 to node 8. What is its length?

Path: Length:

c. Find a shortest path from node 4 to node 8. What is its length?

Path: Length:

1 The principle of optimality

• Let *P* be the path $1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$ in the graph for Example 1

• *P* is a shortest path from node 1 to node 8, and has length 10

• Let P' be the path $3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$

o P' is a **subpath** of P with length 8

• Is *P'* a shortest path from node 3 to node 8?

• Suppose we had a path *Q* from node 3 to node 8 with length < 8

• Let R be the path consisting of edge (1,3) + Q

 $\circ~$ Then, R is a path from node 1 to node 8 with length

• This contradicts the fact that

o Therefore,

The p	incipl	e of o	ptimality	(for	shortest	path	problems
-------	--------	--------	-----------	------	----------	------	----------

In a directed graph with no negative cycles, optimal paths must have optimal subpaths.

- How can we exploit this?
- If optimal paths must have optimal subpaths, then we can construct a shortest path by extending known shortest subpaths
- Consider a directed graph (N, E) with target node $t \in N$ and edge lengths c_{ij} for $(i, j) \in E$
- By the principle of optimality, the shortest path from node *i* to node *t* must be:

edge (i, j) + shortest path from j to t for some $j \in N$ such that $(i, j) \in E$

2 Formulating recursions

- A **recursion** defines the value of a function in terms of other values of the function
- Let

f(i) = length of a shortest path from node i to node t for every node $i \in N$

- Using the principle of optimality, we can define *f* recursively by specifying
 - (i) the **boundary conditions** and
 - (ii) the recursion
- The boundary conditions provide a "base case" for the values of *f*:

• The recursion specifies how the values of *f* are connected:

the grap	h for Example 1. Use your computations to find a shortest path from node 1 to node 8.
f(8) =	
f(7) =	
<i>f</i> (6) =	
<i>f</i> (5) =	
f(4) =	
f(3) =	
f(2) =	
f(1) =	
Shortest	path from node 1 to node 8:

Example 2. Use the recursion defined above to find the length of a shortest path from nodes 1, ..., 8 to node 8 in

• Food for thought:

- Does the order in which you solve the recursion matter?
- Why did the ordering above work out for us?

3 Next lesson...

- Dynamic programs are not usually given as shortest/longest path problems as we have done over the past few lessons
- Instead, dynamic programs are usually given as recursions
- We'll get some practice using this "standard language" to describe dynamic programs